
This file contains the script for the video included on the CD. It may diverge from
the actual spoken text slightly, due to a bit of ad-libbing.

Additionally, you'll find a field by field description of all the customizations done
within the dictionary, at the bottom of the file.

Thank you for taking the time to look at the evaluation edition of Clarion for Windows.

What is Clarion for Windows about?

No coding. No compromise. Powerful compiled applications for a broad range of
database users: novices, power users, and professional developers.

Clarion for Windows rises to “the next level” of Rapid Application Development—a new
tier of programmer-friendly tools that maximize productivity, power, and performance.

The level of automation in creating applications with Clarion for Windows surpasses
other RAD tools. With other tools, you create the user interface visually, but the behavior
of an application must still be coded by hand. Clarion produces a complete business
solution for you: immediately and automatically.

This is what Clarion for Windows brings you:
Rapid Application Development...

at a level beyond other RAD tools
32-bit Compiler...

with the capability to create 16 bit Windows applications, as well.
Application Generator...

an intelligent code generator that provides maximum code
reusability with minimum effort

Professional Strength Database Dictionary/Replaceable Database Drivers
There are live links between the dictionary and your application

that far surpass the capabilities of one way data wizards in other RAD
tools. Direct drivers or ODBC can connect you to your data, no matter
where it is and in what form.

Clarion for Windows is
The Only Windows Application Development Environment With:

16 and 32-bit Compilers

That gives you

Windows Platform Independence. You can develop the same app for Windows 3.1,
Windows 95, and Windows NT from the same project, using the same tool. You can
provide Windows 95 controls, like tool tips and tree controls, to your 16-bit Windows
users. You can use your 16 bit .VBX's safely and reliably under 32 bit Windows. If your
end users are making the move to 32 bit windows in stages, no other product can help
you support them like this one can.

Clarion for Windows also has a powerful Application Wizard.

You get Complete Applications Without Coding. Full featured ones based on the
database description, business rules, and application preformatting that you store in the
dictionary. You get browse windows listing the records in each table, and links to related
tables. Update forms with the control formatting you pre-select, and lists showing related
child records where applicable. Reports. You get complete, threaded applications with
separate record buffers for each browse the end user opens. All this with absolutely zero
coding.

Clarion also has Code Generating Templates

Templates are Complete Business Solutions.

Clarion templates include data and code, like objects. They also include something
additional: a design time user interface. That means you as a developer set template
properties and functionality by checking a box, or choosing an item from a list. You don't
need to consult a reference document to find an obscure function. The application
generator takes your input, then generates only the Clarion language code needed to
support the functionality you request. There's no such thing as Fatware in Clarion
applications. Your completed applications are lean and mean.

More importantly, the templates include intelligent user interface controls. With other
RAD tools, you place an object on a window form; for example, a combo box. But then
you have to write code to make the combo box do something. With Clarion, the combo
box already knows how to do a lookup or update a record. You use its template interface
to pick a table and a field. If the end user types in a new value, it even knows how to
update a child file. The templates represent complete business solutions -- not simple
shortcuts.

The final component in the list is A True Optimizing Compiler

Clarion for Windows give you Small, Fast, Royalty-Free, Native Executables

Clarion features the TopSpeed backend compiler. You get true compiled applications for
both 16 and 32 bit Windows. Your applications outperform any interpreter driven RAD
applications by miles.

TopSpeed Corporation publishes Clarion for Windows

Founded 1983 as Clarion Software Corp.

Merged With JPI in 1992

which is Known for its TopSpeed Compiler Line, Today the Clarion Language Functions
as the “Surface” for the Back End Compiler

In This Demo:

We'll Create a Complete, Complex Application With ZERO Coding

We'll incorporate a 32-bit ODBC Link to a Microsoft Access File

The end result will be a 32-bit Multi-Threaded application with

Browse Windows, Update Forms, and Reports for Seven Tables

Tabbed Dialogs Showing Related Records in Child Tables

And we'll do this
solely by describing the database, the business rules, and some application
preformatting in The Database Dictionary

which also Stores a Description of Your Database:Tables, Referential Integrity Options,
etc.

It Stores Preformatting Options for Your Application
Types of Controls
Appearance of Controls
Menu and Sort-Tab Descriptions by File and Key

How We’ll Do It

Clarion Templates Contain Data Structures and Code
Reads Database Description and Preformatting Options from Dictionary
The Application Generator generates Clarion Language Code
The Optimizing Compiler Creates a Royalty-Free Executable

Clarion Templates Are Complete Business Solutions
When You Place a Control, It Already Knows How To Perform a Lookup, Save A Record,
Add a Child Record… and many more
Clarion Templates Include a DesignTime User Interface. To Set Properties and
Functionaliy, You Check a Box, Choose From a List, etc.

We’ll Do This in Twenty Five Minutes
We’ll Do It Without Writing a Single Line of Code.
YOU Can Do the Same for Your Databases by Following the Online Guide!

Let’s See...

The Demo:

This is the development environment. Our starting point is a new database dictionary.
Clarion is the only Rapid Application Development tool with both a compiler, and a
professional strength database dictionary. The dictionary stores a description of your
database -- its tables, fields, relations, Referential Integrity options, and much more as
you'll soon see.

We're importing table definitions from an existing database. Notice the list of direct
drivers. Today we'll use ODBC to connect to a Microsoft Access database called
Northwind Traders. It's a sample file that ships with Access 2.0. A wizard lists the tables
included in the database. We select one. We type in a description in the File Properties
dialog. The Clarion application wizard uses the description in menu item text, window
captions, and other parts of the user interface that reference the table.

Notice that when you import an existing database, you never have to declare the fields
one by one. It's done for you automatically. In fact, in the case of Microsoft Access files,
the import procedure even takes the Access combined date and time fields, and
provides Clarion group structures, so that you can place controls that edit either the date
or the time separately.

Notice that the File Properties dialog also controls the THREAD attribute. Clarion
applications support cooperative threads in 16-bit Windows, and system threads in 32-bit
Windows. Each thread gets its own record buffer. This makes for quicker, safer record
handling.

All that you need to do is to import the table definitions, define the relationships,
optionally preformat controls referencing the database fields, run the Application Wizard,
and compile. You get a complete application.

From the names of the tables, it looks like we're building an Order/Entry application.
There's no limit on the number of tables you can define in a dictionary. If you're a
business programmer, you may have a large accounting package with, say, 250 tables.
And you probably have an application backlog. Accounting wants custom apps for
managing payroll and G/L tables. Sales wants order/entry apps. Someone else wants
mailing labels.

This is Clarion's strength: when you need to create many applications quickly, that share
a common look and feel, you preformat the fields in the database dictionary, run the
application wizard, pick the tables that each custom app needs to manage, and just hit
the Make button.

By spending a couple of days up front, choosing the types of controls and their
appearance for each database field, you can do half your development work for the next
six months. Since many applications reference the same database, you describe the
database once, then generate apps as needed.

The Application Wizard creates a full featured application automatically. There's a
browse for each table, with buttons to browse any related tables, and a tab showing
each sorting option. There are update forms. If it's a parent file, a property sheet in the
update form displays related child records in a listbox. There are reports for each table
and key.

This is all automatic. The level of automation in creating applications with Clarion for
Windows surpasses other RAD tool. Your starting point is where the others leave off. It's
the "Next Level" of Rapid Application Development.

This is the last table to add before we begin defining relationships. Our applications will
maintain every table except this one, just to underline that your dictionary is a repository
for your database, and that you can create many applications from the same dictionary,
but not every application needs to reference all the tables in the dictionary.

Let's begin defining the relationships. The Relationship Properties dialog lists all the
tables and all the keys in your database. You define the type of relationship, choose the
tables, and choose the keys. We can map the link fields automatically with one button
press. You also choose the Referential Integrity Constraint options here.

But wait -- we're using the Jet database engine here, and that handles RI in the engine,
right -- wrong! If you're using VB to maintain Access data files, you don't get RI unless
you handcode the BeginTransaction and EndTransaction statements. The Direct Access
Objects don't support RI. That means VB by default doesn't do RI.

With Clarion, all you have to do is choose the RI behavior for updates and deletes. We'll
support RI in the generated code. That means you can support RI in any database. For
all the tables in this dictionary, we'll choose Cascade on Update, and Restrict on Delete.
That will migrate any changes in a key field to the children, and prevent a deletion in a
parent record if there are any related child records.

(4:39)

What's more, the live link between the Database Dictionary and the Application

Generator gives you a tremendous amount of flexibility. Let's say you have an AS/400
database. Up until recently the DBMS didn't support RI. So you add the option in the
database dictionary to generate the code. But what happens when you update your
DBMS to the latest version, which does support RI? With Clarion, you go back to the
dictionary, revise your RI options, then regenerate and recompile. Period.

The links between your dictionary and application file are live. Contrast that with a one-
way wizard in other RAD tools. Have you ever needed to revise a database using
Delphi? Let's say you need to add a field. The Delphi Database Wizard set you up; but
you can't run it a second time, to make a revision. In fact, in most cases, you're best off
starting your project over from scratch rather than trying to revise your data definition!

Clarion represents a new type of programmer-friendly tool that maximizes your
productivity, yet gives you a level of power and performance in the finished application
that you don't expect from a RAD tools. It's a power tool for people who produce apps for
a living-- or for anybody who wants to get the job done fast, and right the first time.

We've defined our tables -- let's do some serious pre-formatting. We'll go through the
tables in order, first looking at the keys, then the fields.

In the Orders table, the first key is the Order ID number. The field description will appear
on the sort tab in the browse dialog for this table. This is the primary key, and it's an
auto-number field. We'll automatically generate code to increment the value for every
new record entered.

Then we add descriptions for the other keys. In addition to providing the text for the sort
order tab, a report will be created for each table and key.

Now is a good time to talk about the template system, which is the basis for the
Application Wizard. The templates are like objects -- they contain data, and executable
code. They also contain symbols that directly link to the data dictionary. So not only does
a template know how to create a browse, or an update form -- it knows how to create a
browse for your file, or an update form for your record.

Here you see a dictionary option that specifies that this key not be included as a sort
order tab. The templates don't blindly create user interface options for every single item
in your dictionary. You can tell it what to pass over.

Now we can preformat fields. Our first field is the Order ID number field. We set the
numeric formatting display a whole number without comma separators. We had defined
this as an auto increment key. We set the control type to a string control. Since the
generated code takes care of updating the value for a new record, there's no reason for
the end user to be able to edit it.

We set the numeric formatting for the next field. You can preformat the appearance of
any value. This controls how it appears in all template generated user controls. You can
do the same for any data variables you declare.

Here's the Order Date field. This is an Access Date/Time field. Our import procedure
defined a Clarion group structure that allows us to address the date and the time
separately. We first choose an option that tells the templates not to populate the Access

field in any windows. We'll do the same for the overall group structure. We will populate
the date field. We won't populate the "space" that comes between the date and the time.

Now look what we can do for the time field. We can predefine a spin box that increases
and decreases by one minute each time the end user presses the increase or decrease
buttons on the spin box. All we have to do is choose the control type, and set the
stepping increment for the spin box to 6000 hundredths of seconds.

The templates will automatically place the spin box in the update forms for you. But even
if you design your own window, you can still use that same spin box.

Next we have another date field, and we'll do the same thing we did for the last one.
Let's talk about templates a little more.

Templates have something that objects don't -- a design time user interface. The
Application Generator will pick a set of templates to fit the database we design here. But
each template offers additional customization possibilities for each window or report
created. You can edit the procedures with the visual design tools. When you right click
on a template object, such as a list box full of database records, the design time user
interface appears. You can add a total for a column in that listbox. You can set a range
limit, or change the type of locator control. The template provides a user friendly
customizing method for you, the developer.

So you see, we provide a wealth of functionality as a starting point. But you have the
capability to infinitely customize it. No coding, no compromise. Powerful, compiled
applications, for Windows 3.1, Windows 95 and Windows NT. All from a single project
file.

These spin boxes are Windows 95 controls. We'll use the native controls under Windows
95. But we also clone the resource for backwards compatibility for your Windows 3.1
apps. You don't have to worry about what the API on the end user's target machine
supports. You just tell the compiler to make either a 16 bit or 32 bit app, and we'll do the
rest.

It's going to be a while before the world standardizes on 32 bit Windows. No other
programming tool that we know of will let you target both 16 and 32 bit Windows
operating systems from a single project. Only Clarion can do this. Only Clarion lets you
incorporate Windows 95 controls like tool tips and tree controls in your 16 bit apps. Only
Clarion works the other way, as well, and lets you incorporate your 16-bit .VBX controls
in your 32 bit apps, safely and reliably. You don't have to spend a fortune updating your
custom control library until you're ready. This is for real world programmers.

We're up to the second table. The customer code, which is the primary key for this table
is an alpha value, so we don't define the key as an auto number key. We'll let the end
user type in a value.

Another great thing about Clarion is the Clarion language. For this situation, you might
want to embed a few lines of custom code that add a new customer code when opening
the window for a new record. The templates provide literally thousands of access points,
at which you can insert your own hand coded Clarion language statements. It gives you
total control over your application. And the Clarion language is remarkably easy to learn

and to read. It's much easier for programmers coming from a structured language
background, such as COBOL and Xbase, to learn Clarion than it is to learn an Object
Oriented language, such as Smalltalk.

We'll preformat two fields in this table. Here we have a phone field. We'll use a pattern
picture, that displays the phone number in area code - exchange - 4 digit format, with the
area code surrounded by parentheses, a space before the exchange, and a dash after
the exchange.

And we'll do the same for the fax field. You can put any characters in a pattern picture.
It's much easier for the end user, who can enter data more quickly and reliably, and it
takes up less space in the database, since you don't store the parentheses, dash and
space.

And on to the next table.

This is the Product Categories table. Notice that the keys were defined out of order in
the Access database file. The primary key is listed second, rather than first. We'll put a
description on the first key. Now for the second, the primary key, we put our description,
we set the correct attributes, and now we select an option that will tell the Application
Wizard to make this the first sort order tab in the browse window.

Now we preformat our fields. The Category ID number field is the primary key field. We
want to display the numeric value without commas, and we want to prevent the end user
from editing it, so we change that to a string control. The auto increase code will
increment the value for each new record.

The description field is a memo field. You can see that the import procedure brought it in
as a 31K string. We're going to demonstrate how you can preformat fields down to the
last detail of their appearance. Here we'll set up a text control, whose font and font
attributes will be Arial, 10, bold, and red. Let's remember to look for this control when we
run the application!

Now the next control is the Picture field. In the Access sample application, this is actually
an OLE field. You can't send OLE data via ODBC, because the ODBC spec doesn't
support it. So we'll choose the option to skip this field.

If this were "real life," what I'd do is to set up a separate field listing file names, then
display graphic files according to the file name. Remember that Clarion offers absolutely
superb graphics support. For the best file compression, I'd take advantage of our support
for JPG graphics, and display the external files in our Image controls. If you have to
support, say, a human resources database, or a real estate database, JPG is simply the
best way to store true-color photographic images.

We're up to the Products table. There are several keys to add descriptions for, and a few
to tell the Application Wizard not to include.

This is a good point to talk about the default application paradigm embodied in the
Application Wizard applications. For each table we define in the dictionary, you get a
threaded browse window, which is essentially a list box displaying all the database
records in a page loaded listbox. All the locating is done on keys, which provides for

really fast performance, even in very large databases. The browse listbox is on a
property sheet, whose tabs list the keys for that table, as we've explained. When the end
user clicks on a tab, the sort order of the browse listbox changes.

Each browse is a separate thread in its own MDI window. Contrast this to Delphi, in
which MDI support must be completely hand coded. We should also mention that when
accessing an SQL database, via ODBC, or with one of our optional SQL drivers, the
templates automatically refresh the SELECT every so often. so the end user's data is
always up to date. Delphi doesn't do this.

When the end user double clicks a record, or presses the Insert button, an update form
appears. It shows all the fields in the database, with the preformatting options you select
in the dictionary. The update form includes full support for concurrency checking. You
don't have to do anything at all to support a multi-user database. The optimistic
concurrency checking implemented in the templates is probably the safest, most reliable
method we know of for use in a wide variety of databases.

We're up to the Unit_Price field. We want to pre-format this field as a currency value.
Notice that even though the Access field is defined as a string, we can still apply a
numeric picture. It's total customization control.

For the next pre-formatted control, we have the Discontinued field. It's a BYTE field, like
a logical field in Xbase. We'll preformat the field so that the end user sees a checkbox.
You can also define the text that appears alongside the checkbox. You can even define
an icon, so that the end user sees a picture control that shows depressed for True, and
not depressed for False.

Back to the application paradigm. Whether the Application Wizard places it there, or you
place a field in a custom window, the templates contain all the code that implements
updating a database record, or reporting back to the end user if it turns out another
workstation has changed that record.

Our full name for the default application paradigm is the Browse-Form-Browse paradigm.
The next level in the paradigm is a select browse. To fill in a field on the update form,
you can optionally call another browse as a lookup. The end user chooses a record from
a related file from a list box, presses the Select button, and then that value is filled into
the field on the update form. All this can be done with zero coding.

You can really develop a complete application without coding. Any database. Any
Windows platform. You get a compiled application.

There's a full description of the default application paradigm in the on line hypertext
guide; it's the section called "Prototype."

And here we're pre-formatting fields in the Employees database. We're choosing not to
populate portions of the date fields. That is, it's unlikely we need to know what time of
day an employee was born -- we just want the date.

Clarion is all about practical programming. And the most practical thing about is that by
preformatting so much in the database dictionary, you can save an enormous amount of
time developing many applications from the same database dictionary.

It's a different way of development than other RAD tools. Because the Application
Wizard and the Application Generator do so much, we move the emphasis to where it
belongs for business programmers: to planning. Planning the database. Planning the
business rules. Clarion consultants will tell you, that once you've got the database
design, the application writes itself. Literally. And our tech support department will tell
you something else: that 90% of the time, when a business application goes really
wrong, it's the database design.

But let's not forget: you can still put in all the bells and whistles you like, using visual
design tools and the Clarion fourth generation language. And even that part is easier
using Clarion than with other tools!

Even if you're not a business user. Say you're the power user at the office, the one who
realizes that you don't use a spreadsheet to maintain a database. You've been
attempting to move it all to an end user database. Well, with Clarion, you can create
compiled applications direct from your data files. Read the User's Guide chapter on
database design, then save those Excel spreadsheets as .DBF files. You can create
compiled applications directly from your database. The Application Wizard walks you
through it all.

Do you have data in some PC database format, and want to move it to a more efficient
file format? Read the chapter in the User's Guide on the Database Browser. It
automatically converts your data files from one file format to another. And you can
customize your data types, set up validity options, and preformat fields and keys along
the way. You can even store multiple tables in a single physical file, using the TopSpeed
file format. Which, by the way, automatically compresses memo fields. Like everything
else in Clarion for Windows, it's small, tight, and fast.

Consider the size of your finished applications. This one, at 32-bits, multi-threading, and
several reports, will be less than a megabyte and a half. That's about half the size of a
VB app with the Jet database engine and Crystal Reports. And it's about a fifth the size
of a Delphi app, with the Borland Database Engine and ReportSmith runtimes, and
they're not even 32 bits yet.

Back to our database dictionary here. We're finishing up the Employees table, and
moving on to the Suppliers table. We're taking care to describe any type of action which
we haven't described previously. For this table, we'll add descriptions and attributes to
the keys, choosing not to populate some of them.

The Suppliers table has a one to many relationship with the products table. When we run
the application and display the Suppliers table in a browse, a button will appear that
leads to another browse showing the products for the currently selected supplier.
Likewise, an update record for a given supplier will include a tab that displays a listbox
when clicked. The end user can then see any related product records for the current
supplier.

The template interface makes it simple to add an additional field that counts the number
of products included in the listbox, without writing a single line of code. You'll see exactly
how to do this in exercise two of the Evaluation Edition on line guide. For your
convenience, don't forget that we've provided a separate document with the same

tutorial, formatted to print on letter size paper.

Some of the additional template functionality includes field validation, text viewers,
combo boxes that automatically update a child file if a new value is entered by the end
user, and more. With other RAD tools, you typically place a user control, such as a
button. Then you write code that implements some functionality. Clarion templates let
you place a complete business solution. The user control knows how to update a record,
display a file, or much more.

There's a thriving market in third party templates, some of which are included as demos
on the CD. There's even an evaluation version of one third party template.

And of course, you can write your own templates. The Clarion programmer's motto is
write it once, use it many. At some point, you may find that there's some custom
procedure unique to your business, that you need to use in many applications. Write a
template! The Template Language Reference guide shows you how!

Maximum code reusability. We believe that Clarion can provide far greater code
reusabiltity than that promised, but frequently undelivered, by Object Oriented
programming languages. That's not to say we're better -- we're different. If you want to
work with a RAD tool that requires less coding. And for those situations where you need
to code, if you want to work with a structured language that's easy to learn and read,
then Clarion is the answer for you.

Is project maintenance killing you? Think about what we're doing in this exercise. We're
storing application options on a field by field basis in a database dictionary. The
dictionary options can be updated, and the update automatically migrates to the
application at the next regeneration and compile. You'll save time.

Even in the custom parts. When you use the Clarion fourth generation language, you
can read your own code. The other members of your development team can read your
code. Have you ever gone back to a project to make a change six months after you
thought you finished it? With an OOP language, it takes a long time to re-familiarize
yourself with the code. With Clarion, you hit the ground running, and project
maintenance requires less time.

That's it for the tables. We'll close the database dictionary and save it. Remember, we've
described an entire application just by describing a database. We've actually customized
it by setting up pre-formatting options on a field by field basis in the database dictionary.

Now we're going to run the Application Wizard. We name a fresh application file to
create. We choose the database dictionary we just created. Now we run the Application
Wizard, which, by the way, was constructed with the Clarion Template Language. You
can write your own wizards by studying the source for the wizards, and reading the
Template Language Reference.

Here's Mr. Wizard. The first panel is introductory. The second panel allows us to specify
all or a selection of the tables in the dictionary. We'll choose to select the tables.
Chances are, corporate programmers will create many different applications to maintain
various parts of the same database.

We'll select all the files, then deselect the last file, which was the shipper table. We didn't
do any preformatting on that table.

Once we press the Finish button, the Application Generator goes to work. It reads in the
symbols in the database dictionary that describe the database, and the controls we
preformatted. From the file layout, it creates a logical hierarchy of tables, and provides a
browse procedure for each. It provides a selection button that displays any linked
browses. It provides update forms for each table. And it even creates a report for each
field.

It selects the appropriate templates from the template registry, and creates a procedure
for each of the windows or reports that reference each table. It then writes the
application file. The application file contains all the information that you stored in the
database dictionary. It will also store any further customizations that you make, using the
visual design tools, such as when you edit controls in a window, or in the Report
Formatter. It will store any custom code you place in an embed point within a template
procedure. You can even create a source code procedure, which solely contains Clarion
language source code you write. You can call Windows API functions, or functions in an
external .DLL. The .APP file stores all this.

And then it displays it all in a logical procedure call tree. It's a hierarchally arranged
display of all the functionality in your application. It's a different programming paradigm
than the forms-based paradigm in other RAD tools. This is more organized -- it's geared
for the business programmer. You can find functionality at a glance. There's no code
hiding "behind a thousand doors" which is often said about Visual Basic.

Let's set our project option. We'll target a 32-bit Windows system. You make one choice,
and don't worry about the rest. Another option in the full version of Clarion for Windows
allows you to store all functions in a single executable file. You don't need the
library .DLL's that you need with the evaluation edition.

We'll save the application file, and compile. The Run button will generate the code,
compile it, and run the application. It's a blue puff of smoke, because as a development
tool, Clarion leaves the others in a cloud of dust.

At heart, the Application Generator is an intelligent code generator. It generates Clarion
language code that incorporates your database layout, the preformatting options in the
database dictionary, and any customizations you add to the application file, using the
visual design tools, or Clarion language source.

The Application Generator reads the application file, reads the database dictionary, loads
the template registry, then intelligently generates the Clarion language source code.

The project system then generates intermediate symbolic language common to all the
TopSpeed compilers. This is passed to the back end TopSpeed compiler. Whether
Clarion, C, C++, Modula-2, or another language, the actual end result, that is, the
machine code that constitutes your application, is the same. Bottom line, that means
there's absolutely no performance difference between an application written with a fourth
generation language, in this case Clarion, and a third generation language such as C.

It's speed of development and a speedy application. It's the best of both worlds.

What you see now is the TopSpeed backend compiler creating the object files on a
source code module by source code module basis. It's a fast, optimizing compiler,
though in this case we've left the debug code in. If you're interested in a little of the
history of the TopSpeed compiler, play the audio file we've included on the CD entitled
"John Dvorak Radio Show." It's an interview with Niels Jensen, who in addition to
founding Jensen and Partners, which is responsible for the TopSpeed compiler line, also
founded Borland International. It's a good story.

The file which we're creating is in the new Portable Executable format, for Windows 95
and Windows NT. It's a fully 32-bit, native application for those operating systems.
Clarion was the first RAD tool to market with a 32 bit compiler. At the time of this
narration, it's the only RAD tool that creates compiled 32 bit applications. And as far as
we can tell, it's the only RAD tool that will allow you as a developer to support mixed
environments with a single project. If your end users are migrating to 32-bit Windows in
steps, perhaps with one department adopting a new operating system a few months
ahead of another, you need this product. All the other tools will require that you use two
separate tools, maintaining two separate projects, creating two dissimilar applications, if
you need to support both 16 and 32 bit Windows for the immediate future.

Clarion for Windows just makes sense. If you need to develop applications quickly to
clear an application backlog. If you need to develop applications fast. If you need to
maintain a database with a tool that was designed to create database applications from
the ground up. If performance is important. If the size of the finished application is
important, then Clarion is the answer for you.

And here's the proof. The finished application. We've finished linking, and now we'll
execute the application. There's the MDI frame. Let's maximize it. Let's take a look at the
Browse menu.

There's all those descriptions we typed in for each table. A menu item for each table that
leads to a browse window. It'll take an extra second for the first browse, because the
system needs to load the 32-bit ODBC libraries.

Here we are. It's a page loaded listbox showing the records in the Orders file. Notice the
tabs for the sort orders. Notice the resizable columns. When you double-click a record,
you get the update form.

There's a string control for the key field for which we set the auto number attribute. There
were more fields than could fit on one page, so there's an extra tab for the second page.
There are our spin boxes for the time field. Each button press adds one minute.

On this tab, we have the child file records with the order detail records for this order.
Here's an order detail record, with currency formatting for the unit price, and two string
fields for a multiple component key.

Let's see another browse. The Customer file. This is a separate thread. Here's our
records. Let's change the sort order. Here's the update form. Notice the phone field
formatting. The fax field formatting.

The related order records for this particular customer.

Here's the product categories file. Remember we preformatted a text field to appear in
red, arial bold 10 point. Here it is.

Next file. The product list. Here are our products. Here's the update form. The price
formatting looks correct. There's our check box for the Discontinued field. Did we write
any code for any of this? Not a line.

Next file is the employees file. Here's our records. Here's our update form. Next is our
suppliers file. There's the phone field formatting. Look how easy it is for the end user to
display the product information from this vendor.

Here's our Invoice Details file. If you look at exercise two, you find out how to add line
item totals and column totals without writing a single line of code.

Remember, all the concurrency checking for a multi-user system is built in automatically.
All the referential integrity constraints required only a choice from a listbox in the data
dictionary.

How about reports. Let's choose one. It automatically print previews. It builds the data for
the report, then displays it. These reports are pretty simple. Be sure to check the Order
Entry example in the examples subdirectory for an invoice with a pretty form
incorporated. Notice the built in zoom function.

Notice the additional functionality. The standard printer selection dialog. Automatic
window lists for all open windows. That's a complete nuisance using other tools.

Let's close down the application now. The threads shut down in an orderly fashion. And
now we'll close the application development environment.

Presentation part 2

Now Imagine What You Can Do

“It (TopSpeed) designed Clarion for Getting The Job Done, and it is unexcelled in this
area, even by Delphi... So whereas Delphi makes it easy to create applications with
complex custom interfaces and a unique look and feel, Clarion makes it far easier to
generate robust, tight business database applications with a common look and feel—and
do it quickly... Clarion is the best for business applications, and that's business with a
capital 'B.'”

Infoworld, 8/14/95

What do other Reviewers Say

“Clarion for Windows is better suited for breaking up application backlogs created by
complex database requirements.”

PC Week, 10/2/95

“If I were stranded on a desert island and could only take one Windows development
tool with me, it would be Clarion for Windows.”

Data Based Advisor, 2/95

“It is arguably the best Windows development tool on the market today.”

PC Techniques, June-July ’95

“TopSpeed Corp. has a winner here.”

DBMS, July ’95

Be sure to look over all the reviews -- they're included on the CD!

So, when you use Clarion for Windows as your development tool:

You'll Write Less Code and be More Productive

That makes you a Better Programmer

The Optimizing Compiler Makes Your Apps Fly

That makes your applications Faster

And you'll find that Project Maintenance is easier

That makes you a Smarter programmer.

This tool will change the way you develop applications.

What You’ll Need

Clarion for Windows:
One Copy per Developer
No Other Charges

Distribute Applications Royalty-Free
See the Sales Letter that came with your TrialPak to find out how to order!

Demo Example Instructions

Preliminary: using the ODBC Administrator, set up an ODBC data source for the
Northwind Traders database (\ACCESS\SAMPAPPS\NWIND.MDB). In CW, create a
new dictionary, then choose File/Import, selecting ODBC as the database type for the
tables:

1. Import files in this order:

Table Description
ORDERS Invoice List
CUSTOMERS Customer List
CATEGORIESCategory List
PRODUCTS Product List
EMPLOYEES Employee List
SUPPLIERS Supplier List
ORDER_DETAILS (DTL) Invoice Line Items
SHIPPERS Shipping Company List

2. Set the relations and RI constraints:

Tables Keys
ORDERS->>ORDER_DETAILS Primary/Reference 4
CUSTOMERS->>ORDERS Primary/Key_Customer_ID
CATEGORIES->>PRODUCTS Primary/Key_Category_ID
PRODUCTS->>ORDER_DETAILS Primary/Key_Product_ID
EMPLOYEES->>ORDERS Primary/Key_Employee_ID
SUPPLIERS->>PRODUCTS Primary/Key_Supplier_ID

3. Set Key and Field options:

a. Orders

Key Description/Options
PrimaryKey by Order Number

Primary
Auto Number

Key_Customer_ID by Customer Number
Key_Employee_ID by Employee Number
Key_Order_Date by Order Date
Reference (do not populate)
Reference3 (do not populate)
Reference5 (do not populate)

Fields Options
Order_ID Picture: @n_13

Window: from Entry to String
Employee_ID Picture: @n_13
Order_Date (do not populate)
Order_Date_Group (do not populate)

Order_Date_Space (do not populate)
Order_Date_Time Spin box

Step=6000 (1 minute)
Required_Date (do not populate)
Required_Date_Group Over Required_Date

(do not populate)
Required_Date_Space (do not populate)
Required_Date_Time Spin box

Step=6000 (1 minute)
Shipped_Date (do not populate)
Shipped_Date_Group Over Shipped_Date

(do not populate)
Shpped_Date_Space (do not populate)
Shipped_Date_Time Spin box

Step=6000 (1 minute)

b. Customers

Key Description/Options
PrimaryKey by Customer Number

Primary
Key_City by City
Key_Company by Company
Key_Region by Region

Fields Options
Phone @P(###) ###-####)P
Fax @P(###) ###-####)P

c. Categories

Key Description/Options
Key_Category_Name by Category Name
PrimaryKey by Category Number

Primary
Auto Number
Option: Populate 1st

Fields Options
Category_ID Picture: @n_13

Window: from Entry to String
Description Font for text control: Arial, blue
Picture Do Not AutoPopulate

d. Products

Key Description/Options
PrimaryKey by Product Number

Primary
Auto Number

Key_Category_ID by Category
Key_Product_Name by Product Name
Reference (do not populate)
Reference1_Products (do not populate)
Key_Supplier_ID by Supplier ID

Fields Options
Product_ID Picture: @n_13

Window: from Entry to String
Supplier_ID Picture: @n_13
Category_ID Picture: @n_13
Unit_Price Picture: @n$6.2
Discontinued Window: from Entry to Checkbox

e. Employees

Key Description/Options
PrimaryKey by Employee Number

Primary
Auto Number

Key_Last_Name by Last Name

Fields Options
Employee_ID Picture: @n_13

Window: from Entry to String
Birth_Date (do not populate)
Birth_Date_Group (do not populate)
Birth_Date_Space (do not populate)
Birth_Date_Time (do not populate)
Hire_Date (do not populate)
Hire_Date_Group Over Hire_Date

(do not populate)
Hire_Date_Time (do not populate)
Photo (do not populate)
Notes Over Photo

(do not populate)
Reports_To Over Photo

(do not populate)

f. Suppliers

Key Description/Options
PrimaryKey by Supplier Number

Primary
Auto Number

Key_Company_Nameby Supplier Name

Fields Options
Supplier_ID Picture: @n_13

Window: from Entry to String

g. Order Details

Key Description/Options
PrimaryKey by Order/Product

Primary
Auto Number

Key_Product_ID by Product Number
Reference2 (do not populate)
Reference4 (do not populate)

Fields Options
Order_ID Picture: @n_13

Window: from Entry to String
Product_ID Picture: @n_13

Window: from Entry to String
Unit_Price Picture: @n$6.2

4. Save and close the dictionary.
5. Choose File/New/App. Do not specify QuickStart.
6. Type in the .APP file name, select the dictionary, and press OK.
7. Step through Application Wizard, populating all files except Shippers.
8. When the Application Tree appears, press the Project button.
9. In the Global dialog, press the Properties button.
10. Set the Target OS to 32. (This assumes a data source for 32-bit ODBC!)
11. Return to the Application Tree and compile!

Final Notes:

1. You must be sure that your ODBC driver is version 2.00.23.17 or higher -- you cannot
use the ODBC drivers that come with MS Office 4.x -- those are only meant to be used
within MS Office. If you're creating a 32-bit app, you need a 32 bit ODBC driver.

2. If you're creating a 16 bit app, you must also reduce the size allocated to memo fields
(say, to about 2048 bytes), in the field properties dialogs.

